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The small parameter method is applied to solve the problem relating to the mo- 
tion of an insoluble droplet contained within a liquid surface-active agent 
that is nonuniform with regard to concentration. 

The need to study the motion of droplets in liquids arrises in the solution of a number 
of urgent problems in science and engineering (the breakdown of emulsions [i], various appli- 
cations of the Stokes-Ribchinskii problem [2], the dissolving of droplets [3], etc.). 

Let us determine the velocity and shape of an individual droplet contained within an un- 
bounded concentration-stratified liquid surface-active agent (SAA). Under these conditions, 
because of the dependence of surface tension on the SAA concentration tangential stresses 
are developed at the droplet surface, and these lead to interphase convection within the sys- 
tem. We will evaluate these effects under the following assumptions. Both of these liquids 
are incompressible. All of the parameters of the liquids (density Pi, kinematic ~i and dy- 
namic Hi coefficients of viscosity, coefficients of diffusion D i in the first (i = i, unbound- 
ed liquid) and in the second (i = 2, droplet) liquids, as well as the surface dilatational 
Dd and shearing qs coefficients of viscosity and the coefficient of surface diffusion D s are 
constant, with the exception of the coefficient of surface tension a, which depends linearly 
on the surface concentration F [3] : o(F) = o0(F 0) + o'(F - F0), o' is a constant. The 
shape of the droplet r = R(0) deviates only slightly from a sphere of radius a : R = a + 
e(8), where [e l ~ a r, 8, ~ represent the coordinates of a spherical system of coordinates 
whose origin is situated at the center of mass of the dripping droplet, while the polar z 
axis is directed along the constant gradiant of SAA concentration Yc~ = A specified at infin- 
ity. The problem is axial symmetrical (8/8 ~ = 0). The motion is slow and creeping. The 
drip velocity view of the droplet is constant. There is no force of gravity. The liquids 
are insoluble in each other, whereas the SAA are easily soluble in either of the liquids. 
The surface of the droplet is easily penetrated by the SAA. 

Under these assumptions, the distribution of the velocities vi, pressures Pi, and con- 
centrations c i (i = i, 2) in the liquids is governed by the Navier-Stokes equations of con- 
tinuity and diffusion [2, 4]: 

AB ( y l V )  v 1 = A v  I - -  VPl; 4BS (u --I- v l V C l )  = A c l ;  V y i  = O; 

ABp (v2v) v~ = ~Av2 - -  VP2; ABS (u + vevc:)  = DAce. ( 1 ) 

The c o n c e n t r a t i o n  h e r e  i s  c o u n t e d  f r o m  t h e  u n p e r t u r b e d  c o n c e n t r a t i o n  o f  t h e  p o i n t  z = u t ,  
a t  w h i c h  i s  l o c a t e d  t h e  c e n t e r  o f  d r o p l e t  m a s s  a t  t h e  i n s t a n t  o f  t i m e  t .  The  e q u a t i o n s  h a v e  
b e e n  w r i t t e n  i n  d i m e n s i o n l e s s  f o r m .  The  f o l l o w i n g  h a v e  b e e n  c h o s e n  a s  t h e  u n i t s  o f  l e n g t h ,  
v e l o c i t y ,  p r e s s u r e ,  v o l u m e t r i c  a n d  s u r f a c e  c o n c e n t r a t i o n ,  i . e . ,  a , o ' A  a 2 / H I ,  o ' A  a , A  a, Aa  2 
From the dimensionless parameters of the problem 

o 'a2 P2 ~h A = - - A a ,  B -  2 , P - -  , ~ =  S =  
Pl vl Pj ~1 

D~ a aTh a~l~ 

D~ 
v , . ,  D = 
Dt  D1 

o-ha fy --- 

' v I p  1 

A is the only one that is monitored during the course of the experiment. The remaining para- 
meters, including the "force" parameter B, which results in the appearance of tangential 
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stresses at the boundary of separation, characterized the physical properties of the medium. 
For the sake of convenience, the dimensional and corresponding dimensionless quantities are 

identified by the same letters. 

Let us formulate the boundary conditions. We will assume for the sake of determinacy" 
that a droplet drips in the direction of the concentration gradient at velocity u (u is the 
parameter which has to be determined). This is equivalent to the problem, in our reckoning 
system, to the establishment of the impinging flow at infinity: 

r - ~ o o ,  V 1 =--uk; c I = z; Pl = 0. 

Here we also have written out the conditions for concentration and pressure at infinity, 
with k representing the unit vector of the polar axis z = r cos 8. 

At the surface of the droplet r = R(@) the normal components of of velocity nvl = 0 
(i = i, 2) must disappear and the tangential stresses must be continuous: T(Vl--Vz) = C. 
The unit vectors of the normal to the surface n and tangential to the meridional direction 
to the surface of the droplet r = R �9 are expressed in terms of the unit vectors of t~e 
spherical system of coordinates er and ee in accordance with formulas 

(2) 

n = (Re~ - -  R'eo) ~; v = ( R ' e / +  Ree)-~; ~ = (/~m 4- R "  ) - ' / 2 .  63 ) 

Under the conditions of the diffusion kinetics of the process [3] between the concentrations 
within the media, we find that the following relationship is established [3, 5] : c I = Kc 2, 
F = 6c I. The distribution factor K determines the jump in concentration on transitior 
through the boundary, with the thickness 6 of the layer characterizing the distance t~rough 
which the action of the molecular adsorption forces is propagated. 

The balance equation for the mass of the SAA, adsorbed at the surface r = R(@), tmder 
the conditions of diffusion kinetics, assumes the form [3, 5] 

ABSv~ ~(~)P) = (VCl -- DVO2) n q- DsA,F. (4) 

The subscript s here and beyond denotes the operators and functions pertaining to the sur- 
face phase. 

In writing the stress continuity conditions at the media separation boundary, we take 
into consideration the surface effect of viscosity [3, 5], in addition to the volumetric 
viscous stress tensor Oik' = q(avi/ax k + aVk/SXi) , we also introduce the tensor of surface 

viscous stresses Oik (s) = ~s(Svi(S)/BXk + avk(s)/Sx i - ~ikSvz(S)/Sxs + qd6ikavs163 in 

which the possibility of the appearance phase, both of shearing and dilatational stre~;ses, 
is represented by the coefficients ns and Nd, respectively. The surface divergence Vk<S) • 

Oik(S) is equal to the i-th component of the force fi, acting on a unit surface in the i-th 
direction. As a result, the requirement for stress continuity at the media separation bound- 
ary r = R(@) assumes the form [2, 5] 

A zBF (v(s)Vs) v~ ~) = (P, - -  Pl + 2Ha) n~ + (a~') --a;~ 2)) n~ + f~ + W~.  ( 5 ) 

Here  2H r e p r e s e n t s  t h e  a v e r a g e  c u r v a t u r e  o f  t h e  s u r f a c e  r = R(8)  [ 6 ] :  

- - 2 H =  (2R z+3R ' ' -RR" ) -c tg0~  (R z+R'') ~8. (6) 

We will solve the formulated problem by the method of perturbations, expanding the sol- 
ution into series over powers of the parameter A which we will assume to be small: A ~ I. 
Since the SAA concentration gradient at infinity is contained among the measurement units, 
the series must be of the Laurent form 

I ~(-1) r A~(2) r = ~ + + Ar + + . . . .  (7) 

where An~(n) is the n-th order of any of these sort functions: velocity, concentration, etc. 
For example, the shade of the surface r = R(0) in accordance with (7) must be written in the 
form of r = i + Ae(1)+ A2E(2) + ... elipsis. The calculation is different from zero only 
for P2 (Gibbs pressure p2(-I) = 2o/B). For the remaining functions we obtain Taylor series. 
Thus, the approaching velocity is u = U + Au(l) + .... 
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The functions of zero-th order with respect to A satisfy the following system of equa- 
tions: 

V~ ~ = Av~~ Vp~ o' = hA%O); VV~ o~ = 0; AcI~ = 0, (i = 1, 2); 

r ~ 00 ,  v~ ~ = - -  U k ,  c [  ~ = z ,  p[0)  = O; 

r = 1, v~o~,, = v~o.~,.~ = O, v~o~ = % %  c~O~ = Kc[O~, rc0~ = 8c~0~, 

oo~?, ovc~, 
p(O) __p~O)_ 2F(o) + 2 0--7----  2rl ~ +  fr(o) + LeO) = O, 

( / (~ o oO o ,o, o%o~ %o~ _n + o, 
' Or E; T + = 

ac~~ ac~~ 2_ n A rCO~ d z d 
0"--7- - -  D ~ - - - - s - s -  = 0, L =--~-~--- + c t g 0  -~- + 2. (8)  

The exact solution of problem (8) is as follows (PI = cos 0): 

v,~ ~ = __ ~ U [(r 2 -  1) P~e, - -  (1 " 2 t 9  rvP~I; 
2 

c~ ~  ( r  + ~ z  ) P l ;  c~~ 1 ~- ~ K  rP,; F(o) = 6 ( I  + ~ ) P l ;  

( )( ~ 7 ~ = 1 KD 2D~6 2 + --~ + 2Ds8 ; ~r = O, (9)  

( ~ U = - - 2 8  2 + -K- + 2 D , a  ( 2 + 3 n + 2 n a ) - L  (i0) 

For first-approximation function with respect to A, we derive the following system of equa- 
tions : 

-- vpi1~ + Av~ I~ = B (vlO~ v) vi~ Ac~ I~ = BS (U + -,v~~176 . Vv~'~ = 0; 

-- VV~'~ + nAv~'~ ---- B0 (%~ %0~; DAc~'~ = BS (U + v,0~.c~O~); 
2 v 2 

r - ~  oo, v~ I) = -  u(')k; c~ ' )=0;  p ~ ' ) =  O; 

r = I, v<9,, = v~!),: = 0; v~]' = v~>; c~') = Kc['); I'O, = 6ci'); 

P~zl)--Pt~)+2 Or 2~1-"07--+-B L*~) +f~r ~ = 0 ;  

(ov~ , , , ,'~ ( o o ~ ,  .,,,'~ arc,, 
Or re, / - -  ~I \ -07 ~o~ / + + = 0; 

Oc~ l) Octet) - * - D  A r i t )  
- ~  D Or - * ' -  = o,  ( 1 1 )  

whose e x a c t  s o l u t i o n  has  t h e  form [P2 = 1 /2(3  cos20  - 1 ) ] :  
~" c~') r ~1~ 

vi = F~P~er + O, rvP~; B ---- Vi + W#D2; ~ = "~o 2c Y,P~; 
B 

( ) 2C~.  __ e (~) 1 1 " G I ~ - - -  F, 6Cx(r~--r); B =s(2)P~; F~=6C~ rZ r~ , r~ , 

G~=C~(5ra__3r); V ~ = S  ( C ,  Uo~ ) .  
�9 r 12r z ' 

~a' 6 r r ~ ' 

I V, = --~ 2 K + 1 rZ-}- C~ 8K ' 

s( 
W~ = --~ C ~ f  + Ur~ ; uO~ = o. 

14K 

1460 



The integration constants C i (i = I-5), 70, u s(2) are easily found from the boundary 
conditions of problem (ii). In particular, the amplitude s (=) , determining the eccentricity 
of the droplet is as follows: 

1 + ~ 1-.b~ N --}-2q--2(N,--Nn) (12)  
s(,) = B___f_~6 U~(p_ ]) + 6SU -ff 2 ~  7K -2 ] 

�9 g S.k_2 D 10(1 n t - N ) +  1 2 n , - b 8 n ,  " 
K + 66D, 

The question of the convergence of expansions (7), such as those used in the sol~tion 
of problem (1)-(5), is discussed in detail [7]. 

Let us compare the magnitude of the concentrated [8], electrical [5, 9], and thelmal 
[5, 7, i0] actions on the droplet. For this, we will take into consideration that in the 
general case the coefficient of surface tension in first approximation depedns linearly on 
the concentration F, the temperature T, and the applied potential difference V : o = c o + 
o'(F - F 0) + qT(T - To) + ov(V - V0). In view of the linearity of the problem, the tctal 
velocity of the droplet will also be equal to the sum of the velocities U, UT, and UV, of 
the stratified [10], nonisothermal, and polarized media, respectively. Since U, UT, and U V 
are respectively proportional to the coefficients o', OT, and oV, the relationship between 
the concentration, thermal, and electrical actions is determined by the relationship between 
o', OT, and o V. 

NOTATION 

c, concentration; v , velocity; p, pressure;, p, density; v, kinematic viscosity; ~, 
dynamic viscosity; D, diffusion factor; F, surface concentration; K, distribution factor; 
6, layer thickness; r, 8, ~ ,coordinates; a , radius of unperturbed droplets; o, coefficient 
of surface tension; A, B, S, dimensionless parameters of the problem; Ps Legendre polynomi- 
als of degree Z; n.~ , unit vectors normal and tangential to the droplet surface r = ~(0); 
e~,e e , unit vectors of the spherical coordinate system; Oik, viscous stress tensor; u, 
drifting velocity; ~, any of the sort functions; ~, droplet eccentricity; 2H, surface curva- 
ture; T, temperature; V, potential difference. 
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